Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4660328 | Topology and its Applications | 2009 | 9 Pages |
Abstract
With each metric space (X,d) we can associate a bornological space (X,Bd) where Bd is the set of all subsets of X with finite diameter. Equivalently, Bd is the set of all subsets of X that are contained in a ball with finite radius. If the metric d can attain the value infinite, then the set of all subsets with finite diameter is no longer a bornology. Moreover, if d is no longer symmetric, then the set of subsets with finite diameter does not coincide with the set of subsets that are contained in a ball with finite radius. In this text we will introduce two structures that capture the concept of boundedness in both symmetric and non-symmetric extended metric spaces.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology