Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4660371 | Topology and its Applications | 2010 | 8 Pages |
Abstract
Let be a surjective continuous map between compact Hausdorff spaces. The map π induces, by composition, an injective morphism C(Y)→C(X) between the corresponding rings of real-valued continuous functions, and this morphism allows us to consider C(Y) as a subring of C(X). This paper deals with algebraic properties of the ring extension C(Y)⊆C(X) in relation to topological properties of the map . We prove that if the extension C(Y)⊆C(X) has a primitive element, i.e., C(X)=C(Y)[f], then it is a finite extension and, consequently, the map π is locally injective. Moreover, for each primitive element f we consider the ideal and prove that, for a connected space Y, If is a principal ideal if and only if is a trivial covering.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology