Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4660457 | Topology and its Applications | 2009 | 11 Pages |
Abstract
In directed algebraic topology, directed irreversible (d)-paths and spaces consisting of d-paths are studied from a topological and from a categorical point of view. Motivated by models for concurrent computation, we study in this paper spaces of d-paths in a pre-cubical complex. Such paths are equipped with a natural arc length which moreover is shown to be invariant under directed homotopies. D-paths up to reparametrization (called traces) can thus be represented by arc length parametrized d-paths. Under weak additional conditions, it is shown that trace spaces in a pre-cubical complex are separable metric spaces which are locally contractible and locally compact. Moreover, they have the homotopy type of a CW-complex.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology