Article ID Journal Published Year Pages File Type
4660457 Topology and its Applications 2009 11 Pages PDF
Abstract

In directed algebraic topology, directed irreversible (d)-paths and spaces consisting of d-paths are studied from a topological and from a categorical point of view. Motivated by models for concurrent computation, we study in this paper spaces of d-paths in a pre-cubical complex. Such paths are equipped with a natural arc length which moreover is shown to be invariant under directed homotopies. D-paths up to reparametrization (called traces) can thus be represented by arc length parametrized d-paths. Under weak additional conditions, it is shown that trace spaces in a pre-cubical complex are separable metric spaces which are locally contractible and locally compact. Moreover, they have the homotopy type of a CW-complex.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology