Article ID Journal Published Year Pages File Type
4660651 Topology and its Applications 2009 11 Pages PDF
Abstract

Superfilters are generalizations of ultrafilters, and capture the underlying concept in Ramsey-theoretic theorems such as van der Waerden's Theorem. We establish several properties of superfilters, which generalize both Ramsey's Theorem and its variants for ultrafilters on the natural numbers. We use them to confirm a conjecture of Kočinac and Di Maio, which is a generalization of a Ramsey-theoretic result of Scheepers, concerning selections from open covers. Following Bergelson and Hindman's 1989 Theorem, we present a new simultaneous generalization of the theorems of Ramsey, van der Waerden, Schur, Folkman–Rado–Sanders, Rado, and others, where the colored sets can be much smaller than the full set of natural numbers.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology