Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4660740 | Topology and its Applications | 2007 | 8 Pages |
Abstract
We describe the structure of spaces of continuous step functions over GO-spaces. We establish a relation between the Dedekind completion of a GO-space L and properties of the space of continuous functions from L to 2 with finitely many steps. We use the established relation to prove that a countably compact GO-space L has Lindelöf Cp(L) iff the Dedekind remainder of L is Lindelöf and every compact subspace of L is metrizable. Or equivalently, a countably compact GO-space L has Lindelöf Cp(L) iff every compact subspace of L is metrizable and a Gδ-set in L. Other results are obtained.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology