Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4660843 | Topology and its Applications | 2009 | 6 Pages |
Abstract
Let Cp(X) be the space of all continuous real-valued functions on a space X, with the topology of pointwise convergence. In this paper we show that Cp(X) is not domain representable unless X is discrete for a class of spaces that includes all pseudo-radial spaces and all generalized ordered spaces. This is a first step toward our conjecture that if X is completely regular, then Cp(X) is domain representable if and only if X is discrete. In addition, we show that if X is completely regular and pseudonormal, then in the function space Cp(X), Oxtoby's pseudocompleteness, strong Choquet completeness, and weak Choquet completeness are all equivalent to the statement “every countable subset of X is closed”.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology