Article ID Journal Published Year Pages File Type
4660863 Topology and its Applications 2006 16 Pages PDF
Abstract

We show that any category that is enriched, tensored, and cotensored over the category of compactly generated weak Hausdorff spaces, and that satisfies an additional hypothesis concerning the behavior of colimits of sequences of cofibrations, admits a Quillen closed model structure in which the weak equivalences are the homotopy equivalences. The fibrations are the Hurewicz fibrations and the cofibrations are a subclass of the Hurewicz cofibrations. This result applies to various categories of spaces, unbased or based, categories of prespectra and spectra in the sense of Lewis and May, the categories of L-spectra and S-modules of Elmendorf, Kriz, Mandell and May, and the equivariant analogues of all the afore-mentioned categories.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology