Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4660893 | Topology and its Applications | 2009 | 5 Pages |
Abstract
A continuous zero-selection f for the Vietoris hyperspace F(X) of the nonempty closed subsets of a space X is a Vietoris continuous map f:F(X)→X which assigns to every nonempty closed subset an isolated point of it. It is well known that a compact space X has a continuous zero-selection if and only if it is an ordinal space, or, equivalently, if X can be mapped onto an ordinal space by a continuous one-to-one surjection. In this paper, we prove that a compact space X has an upper semi-continuous set-valued zero-selection for its Vietoris hyperspace F(X) if and only if X can be mapped onto an ordinal space by a continuous finite-to-one surjection.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology