Article ID Journal Published Year Pages File Type
4660894 Topology and its Applications 2009 9 Pages PDF
Abstract

Given a partially ordered set P there exists the most general Boolean algebra which contains P as a generating set, called the free Boolean algebra over P. We study free Boolean algebras over posets of the form P=P0∪P1, where P0, P1 are well orderings. We call them nearly ordinal algebras.Answering a question of Maurice Pouzet, we show that for every uncountable cardinal κ there are κ2 pairwise non-isomorphic nearly ordinal algebras of cardinality κ.Topologically, free Boolean algebras over posets correspond to compact 0-dimensional distributive lattices. In this context, we classify all closed sublattices of the product (ω1+1)×(ω1+1), showing that there are only ℵ1 many types. In contrast with the last result, we show that there are ℵ12 topological types of closed subsets of the Tikhonov plank (ω1+1)×(ω+1).

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology