Article ID Journal Published Year Pages File Type
4660905 Topology and its Applications 2009 8 Pages PDF
Abstract

We show that a Hausdorff paratopological group G admits a topological embedding as a subgroup into a topological product of Hausdorff first-countable (second-countable) paratopological groups if and only if G is ω-balanced (totally ω-narrow) and the Hausdorff number of G is countable, i.e., for every neighbourhood U of the neutral element e of G there exists a countable family γ of neighbourhoods of e such that ⋂V∈γVV−1⊆U. Similarly, we prove that a regular paratopological group G can be topologically embedded as a subgroup into a topological product of regular first-countable (second-countable) paratopological groups if and only if G is ω-balanced (totally ω-narrow) and the index of regularity of G is countable.As a by-product, we show that a regular totally ω-narrow paratopological group with countable index of regularity is Tychonoff.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology