Article ID Journal Published Year Pages File Type
4661074 Topology and its Applications 2008 10 Pages PDF
Abstract

In this paper we analyze the existence of points of a subset S of a linear space X where the shortest distance to a point x of X with respect to an asymmetric norm q is attained (q-nearest points). Since the structure of an asymmetric norm do not provide in general uniqueness of such points—due to the fact that the separation properties in these spaces are in general weaker than in normed spaces—we develop a technique to find particular subsets of the set of q-nearest points—that we call optimal distance points—that are also optimal for the norm qs associated to the asymmetric norm.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology