Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4661130 | Topology and its Applications | 2006 | 17 Pages |
Abstract
We describe the atoms of the complete lattice (q(X),⊆) of all quasi-uniformities on a given (nonempty) set X. We also characterize those anti-atoms of (q(X),⊆) that do not belong to the quasi-proximity class of the discrete uniformity on X. After presenting some further results on the adjacency relation in (q(X),⊆), we note that (q(X),⊆) is not complemented for infinite X and show how ideas about resolvability of (bi)topological spaces can be used to construct complements for some elements of (q(X),⊆).
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology