Article ID Journal Published Year Pages File Type
4661212 Topology and its Applications 2007 15 Pages PDF
Abstract

Let H0(X) (H(X)) denote the set of all (nonempty) closed subsets of X endowed with the Vietoris topology. A basic problem concerning H(X) is to characterize those X for which H(X) is countably compact. We conjecture that u-compactness of X for some u∈ω∗ (or equivalently: all powers of X are countably compact) may be such a characterization. We give some results that point into this direction.We define the property R(κ): for every family of closed subsets of X separated by pairwise disjoint open sets and any family of natural numbers, the product is countably compact, and prove that if H(X) is countably compact for a T2-space X then X satisfies R(κ) for all κ. A space has R(1) iff all its finite powers are countably compact, so this generalizes a theorem of J. Ginsburg: if X is T2 and H(X) is countably compact, then so is Xn for all n<ω. We also prove that, for κ

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology