Article ID Journal Published Year Pages File Type
4661582 Annals of Pure and Applied Logic 2016 30 Pages PDF
Abstract

Using finite directed systems defined from “primitive” extension and amalgamation operations, we define an abstract notion of hierarchical decomposition that applies to a large family of classes of finite structures (tame classes). We prove that for any such class C that is uniformly hierarchical – in the sense that cofinally-many members of C have decompositions according to a functorial “program” – the theory TCTC of the generic structure is rosy. Conversely, we also show that for any tame class C, if TCTC is rosy, then C is uniformly hierarchical. Thus, the project of stratifying the complexity of computationally hard problems through parametrizing “width” notions – an important current in Finite Model Theory and Descriptive Complexity Theory – has a second face in Geometric Model Theory.

Related Topics
Physical Sciences and Engineering Mathematics Logic
Authors
,