Article ID Journal Published Year Pages File Type
4661775 Annals of Pure and Applied Logic 2016 24 Pages PDF
Abstract

We characterize model theoretic properties of the Urysohn sphere as a metric structure in continuous logic. In particular, our first main result shows that the theory of the Urysohn sphere is SOPnSOPn for all n≥3n≥3, but does not have the fully finite strong order property. Our second main result is a geometric characterization of dividing independence in the theory of the Urysohn sphere. We further show that this characterization satisfies the extension axiom, and so forking and dividing are the same for complete types. Our results require continuous analogs of several tools and notions in classification theory. While many of these results are undoubtedly known to researchers in the field, they have not previously appeared in publication. Therefore, we include a full exposition of these results for general continuous theories.

Related Topics
Physical Sciences and Engineering Mathematics Logic
Authors
, ,