Article ID Journal Published Year Pages File Type
4661905 Annals of Pure and Applied Logic 2012 18 Pages PDF
Abstract

This paper investigates aspects of measure and randomness in the context of locale theory (point-free topology). We prove that every measure (σ-continuous valuation) μ, on the σ-frame of opens of a fitted σ-locale X, extends to a measure on the lattice of all σ-sublocales of X (Theorem 1). Furthermore, when μ is a finite measure with μ(X)=M, the σ-locale X has a smallest σ-sublocale of measure M (Theorem 2). In particular, when μ is a probability measure, X has a smallest σ-sublocale of measure 1. All σ prefixes can be dropped from these statements whenever X is a strongly Lindelöf locale, as is the case in the following applications. When μ is the Lebesgue measure on the Euclidean space Rn, Theorem 1 produces an isometry-invariant measure that, via the inclusion of the powerset P(Rn) in the lattice of sublocales, assigns a weight to every subset of Rn. (Contradiction is avoided because disjoint subsets need not be disjoint as sublocales.) When μ is the uniform probability measure on Cantor space {0,1}ω, the smallest measure-1 sublocale, given by Theorem 2, provides a canonical locale of random sequences, where randomness means that all probabilistic laws (measure-1 properties) are satisfied.

Related Topics
Physical Sciences and Engineering Mathematics Logic