Article ID Journal Published Year Pages File Type
4662031 Annals of Pure and Applied Logic 2010 21 Pages PDF
Abstract

The structure of ordinals of the form ωωβωωβ for countable ββ is studied. The main result is: Theorem 1. If  β<ω1β<ω1is the sum of one or two indecomposable ordinals, thenωωβ→(ωωβ,3)2.ωωβ→(ωωβ,3)2. Also an example is given to show that α→(α,3)2α→(α,3)2 need not imply α→(α,n)2α→(α,n)2 for all n<ωn<ω.

Related Topics
Physical Sciences and Engineering Mathematics Logic
Authors
,