Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4662031 | Annals of Pure and Applied Logic | 2010 | 21 Pages |
Abstract
The structure of ordinals of the form ωωβωωβ for countable ββ is studied. The main result is: Theorem 1. If β<ω1β<ω1is the sum of one or two indecomposable ordinals, thenωωβ→(ωωβ,3)2.ωωβ→(ωωβ,3)2. Also an example is given to show that α→(α,3)2α→(α,3)2 need not imply α→(α,n)2α→(α,n)2 for all n<ωn<ω.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Logic
Authors
Rene Schipperus,