Article ID Journal Published Year Pages File Type
4662043 Annals of Pure and Applied Logic 2013 32 Pages PDF
Abstract

We introduce a new model construction for Martin-Löf intensional type theory, which is sound and complete for the 1-truncated version of the theory. The model formally combines, by gluing along the functor from the category of contexts to the category of groupoids, the syntactic model with a notion of realizability. As our main application, we use the model to analyse the syntactic groupoid associated to the type theory generated by a graph G, showing that it has the same homotopy type as the free groupoid generated by G.

Related Topics
Physical Sciences and Engineering Mathematics Logic
Authors
, ,