Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4662144 | Annals of Pure and Applied Logic | 2009 | 36 Pages |
Abstract
We present a two-level theory to formalize constructive mathematics as advocated in a previous paper with G. Sambin.One level is given by an intensional type theory, called Minimal type theory. This theory extends a previous version with collections.The other level is given by an extensional set theory that is interpreted in the first one by means of a quotient model.This two-level theory has two main features: it is minimal among the most relevant foundations for constructive mathematics; it is constructive thanks to the way the extensional level is linked to the intensional one which fulfills the “proofs-as-programs” paradigm and acts as a programming language.
Related Topics
Physical Sciences and Engineering
Mathematics
Logic