Article ID Journal Published Year Pages File Type
4662207 Annals of Pure and Applied Logic 2007 13 Pages PDF
Abstract

In proof theory one distinguishes sequent proofs with cut and cut-free sequent proofs, while for proof complexity one distinguishes Frege systems and extended Frege systems. In this paper we show how deep inference can provide a uniform treatment for both classifications, such that we can define cut-free systems with extension, which is neither possible with Frege systems, nor with the sequent calculus. We show that the propositional pigeonhole principle admits polynomial-size proofs in a cut-free system with extension. We also define cut-free systems with substitution and show that the cut-free system with extension p-simulates the cut-free system with substitution.

Related Topics
Physical Sciences and Engineering Mathematics Logic