Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4662298 | Annals of Pure and Applied Logic | 2009 | 13 Pages |
Abstract
We present a stronger variation of state MV-algebras, recently presented by T. Flaminio and F. Montagna, which we call state-morphism MV-algebras. Such structures are MV-algebras with an internal notion, a state-morphism operator. We describe the categorical equivalences of such (state-morphism) state MV-algebras with the category of unital Abelian ℓ-groups with a fixed state operator and present their basic properties. In addition, in contrast to state MV-algebras, we are able to describe all subdirectly irreducible state-morphism MV-algebras.
Related Topics
Physical Sciences and Engineering
Mathematics
Logic