Article ID Journal Published Year Pages File Type
4662363 Annals of Pure and Applied Logic 2009 20 Pages PDF
Abstract

We prove that in a locally finite variety that has definable principal congruences (DPC), solvable congruences are nilpotent, and strongly solvable congruences are strongly abelian. As a corollary of the arguments we obtain that in a congruence modular variety with DPC, every solvable algebra can be decomposed as a direct product of nilpotent algebras of prime power size.

Related Topics
Physical Sciences and Engineering Mathematics Logic