Article ID Journal Published Year Pages File Type
4662580 Annals of Pure and Applied Logic 2007 18 Pages PDF
Abstract

We study generalizations of shortest programs as they pertain to Schaefer’s problem. We identify sets of -minimal and -minimal indices and characterize their truth-table and Turing degrees. In particular, we show , , and that there exists a Kolmogorov numbering ψ satisfying both and . This Kolmogorov numbering also achieves maximal truth-table degree for other sets of minimal indices. Finally, we show that the set of shortest descriptions, , is 2-c.e. but not co-2-c.e. Some open problems are left for the reader.

Related Topics
Physical Sciences and Engineering Mathematics Logic