Article ID Journal Published Year Pages File Type
4662646 Annals of Pure and Applied Logic 2006 10 Pages PDF
Abstract

Lachlan observed that any nonzero d.c.e. degree bounds a nonzero c.e. degree. In this paper, we study the c.e. predecessors of d.c.e. degrees, and prove that given a nonzero d.c.e. degree , there is a c.e. degree below and a high d.c.e. degree such that bounds all the c.e. degrees below . This result gives a unified approach to some seemingly unrelated results. In particular, it has the following two known theorems as corollaries: (1) there is a low c.e. degree isolating a high d.c.e. degree [S. Ishmukhametov, G. Wu, Isolation and the high/low hierarchy, Arch. Math. Logic 41 (2002) 259–266]; (2) there is a high d.c.e. degree bounding no minimal pairs [C.T. Chong, A. Li, Y. Yang, The existence of high nonbounding degrees in the difference hierarchy, Ann. Pure Appl. Logic 138 (2006) 31–51].

Related Topics
Physical Sciences and Engineering Mathematics Logic