Article ID Journal Published Year Pages File Type
4662662 Annals of Pure and Applied Logic 2010 16 Pages PDF
Abstract

Inspired by locale theory, we propose “pointfree convex geometry”. We introduce the notion of convexity algebra as a pointfree convexity space. There are two notions of a point for convexity algebra: one is a chain-prime meet-complete filter and the other is a maximal meet-complete filter. In this paper we show the following: (1) the former notion of a point induces a dual equivalence between the category of “spatial” convexity algebras and the category of “sober” convexity spaces as well as a dual adjunction between the category of convexity algebras and the category of convexity spaces; (2) the latter notion of point induces a dual equivalence between the category of “m-spatial” convexity algebras and the category of “m-sober” convexity spaces. We finally argue that the former notion of a point is more useful than the latter one from a category theoretic point of view and that the former notion of a point actually represents a polytope (or generic point) and the latter notion of a point properly represents a point. We also remark on the close relationships between pointfree convex geometry and domain theory.

Related Topics
Physical Sciences and Engineering Mathematics Logic