Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4662662 | Annals of Pure and Applied Logic | 2010 | 16 Pages |
Inspired by locale theory, we propose “pointfree convex geometry”. We introduce the notion of convexity algebra as a pointfree convexity space. There are two notions of a point for convexity algebra: one is a chain-prime meet-complete filter and the other is a maximal meet-complete filter. In this paper we show the following: (1) the former notion of a point induces a dual equivalence between the category of “spatial” convexity algebras and the category of “sober” convexity spaces as well as a dual adjunction between the category of convexity algebras and the category of convexity spaces; (2) the latter notion of point induces a dual equivalence between the category of “m-spatial” convexity algebras and the category of “m-sober” convexity spaces. We finally argue that the former notion of a point is more useful than the latter one from a category theoretic point of view and that the former notion of a point actually represents a polytope (or generic point) and the latter notion of a point properly represents a point. We also remark on the close relationships between pointfree convex geometry and domain theory.