Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4662722 | Annals of Pure and Applied Logic | 2009 | 11 Pages |
We investigate the complexity of finding solutions to infinite recursive constraint satisfaction problems. We show that, in general, the problem of finding a solution to an infinite recursive constraint satisfaction problem is equivalent to the problem of finding an infinite path through a recursive tree. We also identify natural classes of infinite recursive constraint satisfaction problems where the problem of finding a solution to the infinite recursive constraint satisfaction problem is equivalent to the problem of finding an infinite path through finitely branching recursive trees or recursive binary trees. There are a large number of results in the literature on the complexity of the problem of finding an infinite path through a recursive tree. Our main result allows us to automatically transfer such results to give equivalent results about the complexity of the problem of finding a solution to a recursive constraint satisfaction problem.