Article ID Journal Published Year Pages File Type
4662791 Annals of Pure and Applied Logic 2007 13 Pages PDF
Abstract

In this paper, we develop the beginning of Lie-differential algebra, in the sense of Kolchin (see [E.R. Kolchin, Differential algebra and algebraic groups, in: Pure and Applied Mathematics, vol. 54, Academic Press, 1973]) by using tools introduced by Hubert in [E. Hubert, Differential algebra for derivations with nontrivial commutation rules, J. Pure Appl. Algebra 200 (2005) 163–190].In particular it allows us to adapt the results of Tressl (see [M. Tressl, A uniform companion for large differential fields of characteristic zero, Trans. Amer. Math. Soc. 357 (10) (2005) 3933–3951]) by showing the existence of a theory of Lie-differential fields of characteristic zero. This theory will serve as a model companion for every theory of large and Lie-differential fields extending a model complete theory of pure fields. As an application, we introduce the Lie counterpart of classical theories of differential fields in several commuting derivations.

Related Topics
Physical Sciences and Engineering Mathematics Logic