Article ID Journal Published Year Pages File Type
4663690 Acta Mathematica Scientia 2011 13 Pages PDF
Abstract

We use Hopf-Lax formula to study local regularity of solution to Hamilton-Jacobi (HJ) equations of multi-dimensional space variables with convex Hamiltonian. Then we give the large time generic form of the solution to HJ equation, i.e. for most initial data there exists a constant T > 0, which depends only on the Hamiltonian and initial datum, for t > T the solution of the IVP (1.1) is smooth except for a smooth n-dimensional hypersurface, across which Du(x, t) is discontinuous. And we show that the hypersurface tends asymptotically to a given hypersurface with rate t−¼.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)