Article ID Journal Published Year Pages File Type
4663770 Acta Mathematica Scientia 2013 18 Pages PDF
Abstract

We consider the growth rate and quenching rate of the following problem with singular nonlinearity ut  = Δu−u−λ,  ut  = Δu − u−μ, (x,t) ∈ℝn × (0, ∞),u(x,0) = u0(x), u(x,0) = u0(x), x∈ℝnu(x,0) = u0(x), u(x,0) = u0(x), x∈ℝn for any n≥ 1, where λ,μ 0 are constants. More precisely, for any u0(x), v0(x) satisfying A11(1+|x|2)α11 ≤u0≤A12 (1+|x|2)α12, A21(1+|x|2)α21 ≤ u0 ≤ A22 (1+|x|2)α22 for some constants α12 ≥ α11, α22 ≥ α21, A12 ≥ A11, A22 ≥ A21, the global solution (u,v) exists and satisfies A11(1+|x|2+b1 t)α11 ≤ u ≤ A12 (1+|x|2+b2 t)α12, A21 (1+|x|2+b1 t)a21 ≤ u ≤ A22 (1+|x|2+b2 t)α22 for some positive constants b1,b2 (see Theorem 3.3 for the parameters Aij, αij, bi, i,j = 1,2). When (1-λ)(1-λμ) > 0, (1-λ)(1-λμ) > 0 and 0< u0≤ A1 (b1 T + |x|2)1−λ1−λμ , 0 < u0≤ A2 (b2 T + |x|2) 1−μ1−λμ in ℝn for some constants Ai, bi (i = 1,2) satisfying A2  >  2nA11−λ1−λμ, A1−μ > 2nA2 1−μ1−λμ and 0 < b1 ≤ (1−λμ)A2−λ−(1−λ)2nA1 (1−λ)A1 , 0 < b2 ≤ (1−λμ)A1−μ−(1−μ)2nA2 (1−μ)A2 , we prove that u(x,t) ≤ A1 (b1 (T−t)+|x|2)1−λ1−λμ, u(x,t) ≤ A2 (b2 (T−t)+|x|2)1−μ1−λμ in ℝn× (0,T). Hence, the solution (u,v) quenches at the origin x = 0 at the same time T (see Theorem 4.3). We also find various other conditions for the solution to quench in a finite time and obtain the corresponding decay rate of the solution near the quenching time.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,