Article ID Journal Published Year Pages File Type
4663774 Acta Mathematica Scientia 2013 23 Pages PDF
Abstract

A proper orthogonal decomposition (POD) technique is used to reduce the finite volume element (FVE) method for two-dimensional (2D) viscoelastic equations. A reduced-order fully discrete FVE algorithm with fewer degrees of freedom and sufficiently high accuracy based on POD method is established. The error estimates of the reduced-order fully discrete FVE solutions and the implementation for solving the reduced-order fully discrete FVE algorithm are provided. Some numerical examples are used to illustrate that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the reduced-order fully discrete FVE algorithm is one of the most effective numerical methods by comparing with corresponding numerical results of finite element formulation and finite difference scheme and that the reduced-order fully discrete FVE algorithm based on POD method is feasible and efficient for solving 2D viscoelastic equations.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)