Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4664094 | Acta Mathematica Scientia | 2013 | 20 Pages |
Of concern is a viscoelastic beam modelled using the Timoshenko theory. It is well-known that the system is exponentially stable if the kernel in the memory term is sub-exponential. That is, if the product of the kernel with an exponential function is a summable function. In this article we address the questions: What if the kernel is tested against a different function (say Gamma) other than the exponential function? Would there still be stability? In the affirmative, what kind of decay rate we get? It is proved that for a non-decreasing function “Gamma” whose “logarithmic derivative” is decreasing to zero we have a decay of order Gamma to some power and in the case it decreases to a different value than zero then the decay is exponential.