Article ID Journal Published Year Pages File Type
4665400 Advances in Mathematics 2015 28 Pages PDF
Abstract

We introduce left central and right central functions and left and right leaves in quasi-Poisson geometry, generalizing central (or Casimir) functions and symplectic leaves from Poisson geometry. They lead to a new type of (quasi-)Poisson reduction, which is both simpler and more general than known quasi-Hamiltonian reductions. We study these notions in detail for moduli spaces of flat connections on surfaces, where the quasi-Poisson structure is given by an intersection pairing on homology.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
,