Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4665450 | Advances in Mathematics | 2015 | 44 Pages |
We study the problem of existence of conformal metrics with prescribed Q-curvature on closed four-dimensional Riemannian manifolds. This problem has a variational structure, and in the case of interest here, it is noncompact in the sense that accumulations points of some noncompact flow lines of a pseudogradient of the associated Euler–Lagrange functional, the so-called true critical points at infinity of the associated variational problem, occur. Using the characterization of the critical points at infinity of the associated variational problem which is established in [42], combined with some arguments from Morse theory, some algebraic topological methods, and some tools from dynamical system originating from Conley's isolated invariant sets and isolated blocks theory, we derive a new kind of existence results under an algebraic topological hypothesis involving the topology of the underling manifold, stable and unstable manifolds of some of the critical points at infinity of the associated Euler–Lagrange functional.