Article ID Journal Published Year Pages File Type
4665473 Advances in Mathematics 2015 38 Pages PDF
Abstract

We investigate the uniform piecewise linearizing question for a family of Lorenz maps. Let f be a piecewise linear Lorenz map with different slopes and positive topological entropy, we show that f is conjugate to a linear mod one transformation and the conjugacy admits a dichotomy: it is either bi-Lipschitz or singular depending on whether f is renormalizable or not. f is renormalizable if and only if its rotation interval degenerates to be a rational point. Furthermore, if the endpoints are periodic points with the same rotation number, then the conjugacy is quasisymmetric.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,