Article ID Journal Published Year Pages File Type
4665627 Advances in Mathematics 2014 57 Pages PDF
Abstract

We investigate frequently hypercyclic and chaotic linear operators from a measure-theoretic point of view. Among other things, we show that any frequently hypercyclic operator T acting on a reflexive Banach space admits an invariant probability measure with full support, which may be required to vanish on the set of all periodic vectors for T  ; that there exist frequently hypercyclic operators on the sequence space c0c0 admitting no ergodic measure with full support; and that if an operator admits an ergodic measure with full support, then it has a comeager set of distributionally irregular vectors. We also give some necessary and sufficient conditions (which are satisfied by all the known chaotic operators) for an operator T to admit an invariant measure supported on the set of its hypercyclic vectors and belonging to the closed convex hull of its periodic measures. Finally, we give a Baire category proof of the fact that any operator with a perfectly spanning set of unimodular eigenvectors admits an ergodic measure with full support.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,