Article ID Journal Published Year Pages File Type
4665675 Advances in Mathematics 2014 28 Pages PDF
Abstract
Motivated by the definition of combinatorial scalar curvature given by Cooper and Rivin, we introduce a new combinatorial scalar curvature. Then we define the discrete quasi-Einstein metric, which is a combinatorial analogue of the constant scalar curvature metric in smooth case. We find that discrete quasi-Einstein metric is critical point of both the combinatorial Yamabe functional and the quadratic energy functional we defined on triangulated 3-manifolds. We introduce combinatorial curvature flows, including a new type of combinatorial Yamabe flow, to study the discrete quasi-Einstein metrics and prove that the flows produce solutions converging to discrete quasi-Einstein metrics if the initial normalized quadratic energy is small enough. As a corollary, we prove that nonsingular solution of the combinatorial Yamabe flow with nonpositive initial curvatures converges to discrete quasi-Einstein metric. The proof relies on a careful analysis of the discrete dual-Laplacian, which we interpret as the Jacobian matrix of curvature map.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,