Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4665675 | Advances in Mathematics | 2014 | 28 Pages |
Abstract
Motivated by the definition of combinatorial scalar curvature given by Cooper and Rivin, we introduce a new combinatorial scalar curvature. Then we define the discrete quasi-Einstein metric, which is a combinatorial analogue of the constant scalar curvature metric in smooth case. We find that discrete quasi-Einstein metric is critical point of both the combinatorial Yamabe functional and the quadratic energy functional we defined on triangulated 3-manifolds. We introduce combinatorial curvature flows, including a new type of combinatorial Yamabe flow, to study the discrete quasi-Einstein metrics and prove that the flows produce solutions converging to discrete quasi-Einstein metrics if the initial normalized quadratic energy is small enough. As a corollary, we prove that nonsingular solution of the combinatorial Yamabe flow with nonpositive initial curvatures converges to discrete quasi-Einstein metric. The proof relies on a careful analysis of the discrete dual-Laplacian, which we interpret as the Jacobian matrix of curvature map.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Huabin Ge, Xu Xu,