Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4665928 | Advances in Mathematics | 2014 | 31 Pages |
Abstract
In this paper, we construct Shintani lifts from integral weight weakly holomorphic modular forms to half-integral weight weakly holomorphic modular forms. Although defined by different methods, these coincide with the classical Shintani lifts when restricted to the space of cusp forms. As a side effect, this gives the coefficients of the classical Shintani lifts as new cycle integrals. This yields new formulas for the L-values of Hecke eigenforms. When restricted to the space of weakly holomorphic modular forms orthogonal to cusp forms, the Shintani lifts introduce a definition of weakly holomorphic Hecke eigenforms. Along the way, auxiliary lifts are constructed from the space of harmonic weak Maass forms which yield a “fractional derivative” from the space of half-integral weight harmonic weak Maass forms to half-integral weight weakly holomorphic modular forms. This fractional derivative complements the usual ξ-operator introduced by Bruinier and Funke.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)
Authors
Kathrin Bringmann, Pavel Guerzhoy, Ben Kane,