Article ID Journal Published Year Pages File Type
4666033 Advances in Mathematics 2013 26 Pages PDF
Abstract

We prove a new formula for the Hirzebruch–Milnor classes of global complete intersections with arbitrary singularities describing the difference between the Hirzebruch classes and the virtual ones. This generalizes a formula for the Chern–Milnor classes in the hypersurface case that was conjectured by S. Yokura and was proved by A. Parusiński and P. Pragacz. It also generalizes a formula of J. Seade and T. Suwa for the Chern–Milnor classes of complete intersections with isolated singularities.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , ,