Article ID Journal Published Year Pages File Type
4666223 Advances in Mathematics 2012 25 Pages PDF
Abstract
We isolate a new class of ultrafilters on N, called “quasi-selective” because they are intermediate between selective ultrafilters and P-points. (Under the Continuum Hypothesis these three classes are distinct.) The existence of quasi-selective ultrafilters is equivalent to the existence of “asymptotic numerosities” for all sets of tuples A⊆Nk. Such numerosities are hypernatural numbers that generalize finite cardinalities to countable point sets. Most notably, they maintain the structure of ordered semiring, and, in a precise sense, they allow for a natural extension of asymptotic density to all sets of tuples of natural numbers.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, , ,