Article ID Journal Published Year Pages File Type
4666488 Advances in Mathematics 2012 35 Pages PDF
Abstract

We introduce a family of tableaux that simultaneously generalizes the tableaux used to characterize Grothendieck polynomials and k-Schur functions. We prove that the polynomials drawn from these tableaux are the affine Grothendieck polynomials and k-K-Schur functions – Schubert representatives for the K-theory of affine Grassmannians and their dual in the nil Hecke ring. We prove a number of combinatorial properties including Pieri rules.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)