Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666506 | Advances in Mathematics | 2011 | 56 Pages |
Abstract
Let Ω be a bounded domain with C2-smooth boundary in an n-dimensional oriented Riemannian manifold. It is well known that for the biharmonic equation Δ2u=0 in Ω with the condition u=0 on ∂Ω, there exists an infinite set {uk} of biharmonic functions in Ω with positive eigenvalues {λk} satisfying on ∂Ω. In this paper, by a new method we establish the Weyl-type asymptotic formula for the counting function of the biharmonic Steklov eigenvalues λk.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)