Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666511 | Advances in Mathematics | 2011 | 14 Pages |
Abstract
We determine the shape which minimizes, among domains with given measure, the first eigenvalue of a nonlocal operator consisting of a perturbation of the standard Dirichlet Laplacian by an integral of the unknown function. We show that this problem displays a saturation behaviour in that the corresponding value of the minimal eigenvalue increases with the weight affecting the average up to a (finite) critical value of this weight, and then remains constant. This critical point corresponds to a transition between optimal shapes, from one ball as in the Faber–Krahn inequality to two equal balls.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematics (General)