Article ID Journal Published Year Pages File Type
4666529 Advances in Mathematics 2012 39 Pages PDF
Abstract

This paper constructs cellular resolutions for classes of noncommutative algebras, analogous to those introduced by Bayer and Sturmfels (1998) [2] in the commutative case. To achieve this we generalise the dimer model construction of noncommutative crepant resolutions of three-dimensional toric algebras by associating a superpotential and a notion of consistency to toric algebras of arbitrary dimension. For abelian skew group algebras and algebraically consistent dimer model algebras, we introduce a cell complex Δ in a real torus whose cells describe uniformly all maps in the minimal projective bimodule resolution of A. We illustrate the general construction of Δ for an example in dimension four arising from a tilting bundle on a smooth toric Fano threefold to highlight the importance of the incidence function on Δ.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)