Article ID Journal Published Year Pages File Type
4666549 Advances in Mathematics 2012 13 Pages PDF
Abstract

In this paper we determine the support of the irreducible spherical representation (i.e., the irreducible quotient of the polynomial representation) of the rational Cherednik algebra of a finite Coxeter group for any value of the parameter c. In particular, we determine for which values of c this representation is finite dimensional. This generalizes a result of Varagnolo and Vasserot (2009) [20], who classified finite dimensional spherical representations in the case of Weyl groups and equal parameters (i.e., when c is a constant function). Our proof is based on the Macdonald–Mehta integral and the elementary theory of distributions.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)