Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666583 | Advances in Mathematics | 2011 | 13 Pages |
We prove inequalities for mixed volumes of zonoids with isotropic generating measures. A special case is an inequality for zonoids that is reverse to the generalized Urysohn inequality, between mean width and another intrinsic volume; here the equality case characterizes parallelepipeds. We apply this to a question from stochastic geometry. It is known that among the stationary Poisson hyperplane processes of given positive intensity in n-dimensional Euclidean space, the ones with rotation invariant distribution are characterized by the fact that they yield, for k∈{2,…,n}, the maximal intensity of the intersection process of order k. We show that, if the kth intersection density is measured in an affine-invariant way, the processes of hyperplanes with only n fixed directions are characterized by a corresponding minimum property.