Article ID Journal Published Year Pages File Type
4666628 Advances in Mathematics 2011 31 Pages PDF
Abstract

We give a combinatorial treatment of transverse homology, a new invariant of transverse knots that is an extension of knot contact homology. The theory comes in several flavors, including one that is an invariant of topological knots and produces a three-variable knot polynomial related to the A-polynomial. We provide a number of computations of transverse homology that demonstrate its effectiveness in distinguishing transverse knots, including knots that cannot be distinguished by the Heegaard Floer transverse invariants or other previous invariants.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)