Article ID Journal Published Year Pages File Type
4666631 Advances in Mathematics 2011 18 Pages PDF
Abstract

A graph G is k-critical if every proper subgraph of G is (k−1)-colorable, but the graph G itself is not. We prove that every k-critical graph on n vertices has a cycle of length at least , improving a bound of Alon, Krivelevich and Seymour from 2000. Examples of Gallai from 1963 show that the bound cannot be improved to exceed . We thus settle the problem of bounding the minimal circumference of k-critical graphs, raised by Dirac in 1952 and Kelly and Kelly in 1954.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)