Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4666633 | Advances in Mathematics | 2011 | 36 Pages |
This article provides sharp constructive upper and lower bound estimates for the Boltzmann collision operator with the full range of physical non-cut-off collision kernels (γ>−n and s∈(0,1)) in the trilinear L2(Rn) energy 〈Q(g,f),f〉. These new estimates prove that, for a very general class of g(v), the global diffusive behavior (on f) in the energy space is that of the geometric fractional derivative semi-norm identified in the linearized context in our earlier works (Gressman and Strain, 2010 [15], , 2011 [16]). We further prove new global entropy production estimates with the same anisotropic semi-norm. This resolves the longstanding, widespread heuristic conjecture about the sharp diffusive nature of the non-cut-off Boltzmann collision operator in the energy space L2(Rn).