Article ID Journal Published Year Pages File Type
4666711 Advances in Mathematics 2011 76 Pages PDF
Abstract

We refine the cyclic cohomological apparatus for computing the Hopf cyclic cohomology of the Hopf algebras associated to infinite primitive Cartan–Lie pseudogroups, and for the transfer of their characteristic classes to foliations. The main novel feature is the precise identification as a Hopf cyclic complex of the image of the canonical homomorphism from the Gelfand–Fuks complex to the Bott complex for equivariant cohomology. This provides a convenient new model for the Hopf cyclic cohomology of the geometric Hopf algebras, which allows for an efficient transport of the Hopf cyclic classes via characteristic homomorphisms. We illustrate the latter aspect by indicating how to realize the universal Hopf cyclic Chern classes in terms of explicit cocycles in the cyclic cohomology of étale foliation groupoids.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)