Article ID Journal Published Year Pages File Type
4666758 Advances in Mathematics 2011 29 Pages PDF
Abstract

We study the complex symplectic structure of the quiver varieties corresponding to the moduli spaces of SU(2) instantons on both commutative and non-commutative R4. We identify global Darboux coordinates and quadratic Hamiltonians on classical phase spaces for which these quiver varieties are natural completions. We also show that the group of non-commutative symplectomorphisms of the corresponding path algebra acts transitively on the moduli spaces of non-commutative instantons. This paper should be viewed as a step towards extending known results for Calogero–Moser spaces to the instanton moduli spaces.

Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)